Complete Reachy Mini Programming Guide: Python SDK and Advanced Techniques

Master Reachy Mini programming with our comprehensive guide covering Python SDK, API usage, movement control, and advanced robotics development techniques for desktop robotics applications.

Programming the Reachy Mini robot opens up a world of possibilities for desktop robotics applications. Whether you're a student learning robotics, a researcher developing new applications, or a developer creating commercial solutions, mastering the Reachy Mini Python SDK is essential for unlocking the full potential of this remarkable humanoid robot.

This comprehensive guide will take you from basic setup to advanced programming techniques, providing practical examples and best practices developed through extensive real-world experience with Reachy Mini systems.

What You'll Learn

  • Complete Python SDK installation and setup
  • Basic movement control and motor management
  • Advanced gesture programming and coordination
  • Camera integration and computer vision
  • Real-time interaction and response systems
  • Error handling and debugging techniques

Environment Setup and Installation

Prerequisites

Before diving into Reachy Mini programming, ensure you have the following prerequisites:

  • Python 3.8 or higher: Reachy Mini SDK requires modern Python features
  • Stable network connection: For remote robot control and updates
  • Development environment: VS Code, PyCharm, or your preferred Python IDE
  • Basic Python knowledge: Understanding of OOP concepts and async programming

SDK Installation

Install the Reachy Mini Python SDK using pip. The SDK provides comprehensive tools for robot control, monitoring, and development:

# Install the Reachy Mini SDK
pip install reachy-mini-sdk

# Install additional development dependencies
pip install opencv-python numpy matplotlib jupyter

# Verify installation
python -c "import reachy_mini; print('SDK installed successfully')"

Robot Connection Setup

Establishing a reliable connection to your Reachy Mini is crucial for development. The SDK supports both local and remote connections:

from reachy_mini import ReachyMini

# Connect to local robot (USB/Ethernet)
robot = ReachyMini(host='localhost')

# Connect to remote robot (Wi-Fi)
robot = ReachyMini(host='192.168.1.100')

# Verify connection
if robot.is_connected():
    print("Successfully connected to Reachy Mini")
    print(f"Robot status: {robot.get_status()}")
else:
    print("Connection failed - check network and robot status")

Basic Programming Concepts

Understanding the Robot Structure

Reachy Mini's programming model is based on a hierarchical structure of joints and actuators. Understanding this architecture is fundamental to effective programming:

# Explore robot structure
robot = ReachyMini()

# Access individual joints
left_arm = robot.left_arm
right_arm = robot.right_arm
head = robot.head

# List all available joints
print("Available joints:")
for joint_name in robot.joints:
    joint = getattr(robot, joint_name)
    print(f"  {joint_name}: {joint.present_position}°")

# Check joint limits and capabilities
for joint in robot.joints.values():
    print(f"{joint.name}: Range {joint.angle_limit} degrees")

Basic Movement Control

Start with simple movements to understand joint control and timing. The SDK provides both direct angle control and higher-level gesture functions:

import time

# Basic joint movement
robot.right_arm.shoulder_pitch.goal_position = 45  # degrees
robot.right_arm.shoulder_roll.goal_position = -30
robot.right_arm.elbow_pitch.goal_position = -90

# Wait for movement completion
time.sleep(2)

# Check if movement is complete
while robot.right_arm.is_moving():
    time.sleep(0.1)

print("Movement completed")

# Return to rest position
robot.goto_rest_position()
time.sleep(3)

Coordinated Movements

Create smooth, coordinated movements by synchronizing multiple joints. This is essential for natural-looking gestures:

def wave_gesture():
    """Execute a natural waving gesture"""
    # Prepare arm position
    robot.right_arm.shoulder_pitch.goal_position = 0
    robot.right_arm.shoulder_roll.goal_position = -45
    robot.right_arm.elbow_pitch.goal_position = -45
    
    time.sleep(1.5)  # Allow positioning
    
    # Wave motion
    for i in range(3):
        robot.right_arm.shoulder_roll.goal_position = -20
        time.sleep(0.5)
        robot.right_arm.shoulder_roll.goal_position = -45
        time.sleep(0.5)
    
    # Return to rest
    robot.goto_rest_position()

# Execute the gesture
wave_gesture()

Advanced Programming Techniques

Asynchronous Programming

For responsive applications, use asynchronous programming to handle multiple operations simultaneously:

import asyncio

class ReachyMiniController:
    def __init__(self):
        self.robot = ReachyMini()
        self.is_running = True
    
    async def monitor_status(self):
        """Continuously monitor robot status"""
        while self.is_running:
            status = self.robot.get_status()
            if status['battery_level'] < 20:
                await self.handle_low_battery()
            await asyncio.sleep(1)
    
    async def handle_interactions(self):
        """Handle user interactions and commands"""
        while self.is_running:
            # Check for voice commands, gestures, etc.
            command = await self.get_user_command()
            if command:
                await self.execute_command(command)
            await asyncio.sleep(0.1)
    
    async def main_loop(self):
        """Main application loop"""
        tasks = [
            self.monitor_status(),
            self.handle_interactions(),
        ]
        await asyncio.gather(*tasks)

# Run the controller
controller = ReachyMiniController()
asyncio.run(controller.main_loop())

Computer Vision Integration

Integrate Reachy Mini's cameras with computer vision for intelligent interactions:

import cv2
import numpy as np

class VisionController:
    def __init__(self, robot):
        self.robot = robot
        self.face_cascade = cv2.CascadeClassifier(
            cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
        )
    
    def detect_faces(self, frame):
        """Detect faces in camera frame"""
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = self.face_cascade.detectMultiScale(
            gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
        )
        return faces
    
    def track_face(self):
        """Track faces and orient robot accordingly"""
        cap = cv2.VideoCapture(0)  # Robot's camera
        
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            
            faces = self.detect_faces(frame)
            
            if len(faces) > 0:
                # Get largest face
                largest_face = max(faces, key=lambda x: x[2] * x[3])
                x, y, w, h = largest_face
                
                # Calculate face center
                face_center_x = x + w // 2
                frame_center_x = frame.shape[1] // 2
                
                # Orient head towards face
                angle_offset = (face_center_x - frame_center_x) * 0.1
                current_angle = self.robot.head.neck_roll.present_position
                new_angle = current_angle + angle_offset
                
                # Apply limits
                new_angle = max(min(new_angle, 45), -45)
                self.robot.head.neck_roll.goal_position = new_angle
                
                # Draw face rectangle
                cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 2)
            
            cv2.imshow('Reachy Vision', frame)
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        
        cap.release()
        cv2.destroyAllWindows()

# Use vision controller
vision = VisionController(robot)
vision.track_face()

Gesture Library Development

Create a reusable library of gestures for your applications:

class GestureLibrary:
    def __init__(self, robot):
        self.robot = robot
        self.gestures = {}
    
    def record_gesture(self, name, duration=5):
        """Record a gesture by manually moving the robot"""
        print(f"Recording gesture '{name}' - move the robot manually")
        print("Recording will start in 3 seconds...")
        time.sleep(3)
        
        positions = []
        start_time = time.time()
        
        while time.time() - start_time < duration:
            # Record all joint positions
            current_positions = {}
            for joint_name, joint in self.robot.joints.items():
                current_positions[joint_name] = joint.present_position
            
            positions.append({
                'timestamp': time.time() - start_time,
                'positions': current_positions
            })
            time.sleep(0.1)
        
        self.gestures[name] = positions
        print(f"Gesture '{name}' recorded successfully")
    
    def play_gesture(self, name, speed_factor=1.0):
        """Play back a recorded gesture"""
        if name not in self.gestures:
            print(f"Gesture '{name}' not found")
            return
        
        gesture = self.gestures[name]
        start_time = time.time()
        
        for frame in gesture:
            # Calculate when to execute this frame
            target_time = frame['timestamp'] / speed_factor
            while time.time() - start_time < target_time:
                time.sleep(0.01)
            
            # Set all joint positions
            for joint_name, position in frame['positions'].items():
                if hasattr(self.robot, joint_name):
                    getattr(self.robot, joint_name).goal_position = position
    
    def save_gestures(self, filename):
        """Save gesture library to file"""
        import json
        with open(filename, 'w') as f:
            json.dump(self.gestures, f, indent=2)
    
    def load_gestures(self, filename):
        """Load gesture library from file"""
        import json
        with open(filename, 'r') as f:
            self.gestures = json.load(f)

# Use gesture library
gestures = GestureLibrary(robot)
gestures.record_gesture("hello_wave", duration=3)
gestures.play_gesture("hello_wave")
gestures.save_gestures("my_gestures.json")

Error Handling and Debugging

Common Error Scenarios

Robust applications require comprehensive error handling for various failure modes:

import logging

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class RobustRobotController:
    def __init__(self):
        self.robot = None
        self.max_retries = 3
    
    def connect_with_retry(self, host='localhost'):
        """Connect to robot with automatic retry"""
        for attempt in range(self.max_retries):
            try:
                self.robot = ReachyMini(host=host)
                if self.robot.is_connected():
                    logger.info("Successfully connected to Reachy Mini")
                    return True
            except Exception as e:
                logger.warning(f"Connection attempt {attempt + 1} failed: {e}")
                time.sleep(2)
        
        logger.error("Failed to connect after all retries")
        return False
    
    def safe_move_joint(self, joint, target_angle, timeout=5):
        """Safely move joint with error checking"""
        try:
            # Check if joint exists and is within limits
            if not hasattr(self.robot, joint):
                raise ValueError(f"Joint '{joint}' not found")
            
            joint_obj = getattr(self.robot, joint)
            
            # Check angle limits
            min_angle, max_angle = joint_obj.angle_limit
            if not (min_angle <= target_angle <= max_angle):
                raise ValueError(f"Angle {target_angle} outside limits [{min_angle}, {max_angle}]")
            
            # Execute movement
            joint_obj.goal_position = target_angle
            
            # Wait for completion with timeout
            start_time = time.time()
            while joint_obj.is_moving():
                if time.time() - start_time > timeout:
                    raise TimeoutError(f"Joint movement timeout after {timeout}s")
                time.sleep(0.1)
            
            return True
            
        except Exception as e:
            logger.error(f"Failed to move joint {joint}: {e}")
            return False
    
    def emergency_stop(self):
        """Emergency stop all movements"""
        try:
            for joint in self.robot.joints.values():
                joint.compliant = True  # Make joints soft
            logger.info("Emergency stop executed")
        except Exception as e:
            logger.error(f"Emergency stop failed: {e}")

# Usage example
controller = RobustRobotController()
if controller.connect_with_retry():
    success = controller.safe_move_joint('right_arm.shoulder_pitch', 45)
    if not success:
        controller.emergency_stop()

Performance Optimization

Efficient Communication

Optimize communication with the robot for smooth, responsive applications:

class OptimizedController:
    def __init__(self, robot):
        self.robot = robot
        self.update_rate = 50  # Hz
        self.last_positions = {}
    
    def batch_joint_updates(self, joint_targets):
        """Update multiple joints efficiently"""
        # Group updates to minimize communication
        updates = {}
        for joint_name, target in joint_targets.items():
            if joint_name in self.last_positions:
                # Only update if position changed significantly
                if abs(self.last_positions[joint_name] - target) > 0.5:
                    updates[joint_name] = target
            else:
                updates[joint_name] = target
        
        # Apply all updates at once
        for joint_name, target in updates.items():
            getattr(self.robot, joint_name).goal_position = target
            self.last_positions[joint_name] = target
    
    def smooth_interpolation(self, start_pos, end_pos, duration, steps=50):
        """Create smooth movement interpolation"""
        positions = []
        for i in range(steps + 1):
            t = i / steps
            # Use cubic interpolation for smoother motion
            t_smooth = 3 * t**2 - 2 * t**3
            
            frame_positions = {}
            for joint_name in start_pos:
                start_val = start_pos[joint_name]
                end_val = end_pos[joint_name]
                interpolated = start_val + (end_val - start_val) * t_smooth
                frame_positions[joint_name] = interpolated
            
            positions.append(frame_positions)
        
        return positions

# Create smooth gesture
optimizer = OptimizedController(robot)
start = {'right_arm.shoulder_pitch': 0, 'right_arm.elbow_pitch': 0}
end = {'right_arm.shoulder_pitch': 45, 'right_arm.elbow_pitch': -90}

smooth_path = optimizer.smooth_interpolation(start, end, duration=2)
for positions in smooth_path:
    optimizer.batch_joint_updates(positions)
    time.sleep(0.04)  # 25 FPS

Real-world Application Examples

Interactive Assistant

Build an interactive assistant that responds to voice commands and visual cues:

import speech_recognition as sr
import pyttsx3

class InteractiveAssistant:
    def __init__(self):
        self.robot = ReachyMini()
        self.speech_engine = pyttsx3.init()
        self.recognizer = sr.Recognizer()
        self.microphone = sr.Microphone()
        
        # Calibrate microphone
        with self.microphone as source:
            self.recognizer.adjust_for_ambient_noise(source)
    
    def speak(self, text):
        """Make robot speak and gesture"""
        self.speech_engine.say(text)
        
        # Add speaking gesture
        self.robot.head.neck_pitch.goal_position = 10
        self.speech_engine.runAndWait()
        self.robot.head.neck_pitch.goal_position = 0
    
    def listen_for_command(self):
        """Listen for voice commands"""
        try:
            with self.microphone as source:
                print("Listening...")
                audio = self.recognizer.listen(source, timeout=5)
            
            command = self.recognizer.recognize_google(audio).lower()
            print(f"Heard: {command}")
            return command
            
        except sr.UnknownValueError:
            return None
        except sr.RequestError:
            print("Speech recognition service unavailable")
            return None
    
    def process_command(self, command):
        """Process and respond to commands"""
        if "hello" in command:
            self.speak("Hello! Nice to meet you!")
            self.wave_gesture()
        
        elif "time" in command:
            import datetime
            current_time = datetime.datetime.now().strftime("%I:%M %p")
            self.speak(f"The current time is {current_time}")
        
        elif "dance" in command:
            self.speak("Let me show you my moves!")
            self.dance_routine()
        
        elif "goodbye" in command:
            self.speak("Goodbye! Have a great day!")
            self.wave_gesture()
            return False
        
        else:
            self.speak("I didn't understand that command")
        
        return True
    
    def run(self):
        """Main assistant loop"""
        self.speak("Hello! I'm Reachy Mini. How can I help you today?")
        
        while True:
            command = self.listen_for_command()
            if command:
                continue_running = self.process_command(command)
                if not continue_running:
                    break
            time.sleep(0.1)

# Run the assistant
assistant = InteractiveAssistant()
assistant.run()

Best Practices and Tips

Safety First

  • Always implement emergency stop functionality
  • Check joint limits before movements
  • Monitor battery levels and temperature
  • Use compliant mode when appropriate

Performance

  • Batch multiple joint updates together
  • Use asynchronous programming for responsiveness
  • Implement proper error handling and retries
  • Cache frequently accessed data

User Experience

  • Create smooth, natural-looking movements
  • Provide feedback for long operations
  • Implement graceful degradation for failures
  • Design intuitive interaction patterns

Development

  • Use version control for your robot programs
  • Document your gesture libraries
  • Create modular, reusable components
  • Test thoroughly before deployment

Conclusion and Next Steps

Mastering Reachy Mini programming opens up unlimited possibilities for desktop robotics applications. From simple movements to complex interactive systems, the Python SDK provides the tools needed to bring your robotic visions to life.

Continue your learning journey by:

  • Experimenting with the provided code examples
  • Building your own gesture library
  • Integrating additional sensors and capabilities
  • Contributing to the open-source Reachy Mini community
  • Exploring advanced AI integration possibilities

Remember that great robotics programming combines technical skill with creativity and user-centered design. Focus on creating experiences that are not just technically impressive, but genuinely useful and engaging for your users.

Ready to Start Programming?

Download the complete code examples and start building your own Reachy Mini applications today.